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1 Lattice Basics

There are, in general, two equivalent approaches to defining a lattice; one is rather
“algebraic” in nature, whereas the other is based on the notion of order. We present
both approaches here and then show that they are indeed equivalent.

Definition 1.1 (Lattice - an “algebraic” approach). A lattice is a non-empty set
L together with two binary operations ∨ and ∧ on L satisfying, for each x, y, z ∈ L,
the following identities:

1. x ∨ y = y ∨ x and x ∧ y = y ∧ x (commutativity)

2. x ∨ (y ∨ z) = (x ∨ y) ∨ z and x ∧ (y ∧ z) = (x ∧ y) ∧ z (associativity)

3. x ∨ x = x and x ∧ x = x (idempotent)

4. x ∧ (x ∨ y) = x and x ∨ (x ∧ y) = x (absorption)

Example 1.2. Power set and divisibility:

• Let S be a given set and consider P(S), the power set of S. Then P(S) forms a
lattice under set inclusion, where ∨ and ∧ are interpreted as union and intersec-
tion respectively.

• The set N of natural numbers forms a lattice under divisibility where ∨ and ∧
correspond to the greatest common divisor and the least common divisor functions
respectively.

• Given a group G, the set of all subgroups of G forms a lattice under set inclusion.

Next, recall that a partial oder on a given set S is a binary relation, usually denoted
≤, such that ≤ is reflexive, antisymmetric, and transitive. If, in addition, one of s ≤ t
or t ≤ s holds for all s, t ∈ S, then ≤ is said to be a total order on S.
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Definition 1.3 (Poset). A poset is any non-empty set P with a partial order defined
on it.

Given a poset P and a subset A of P , we say that an element p ∈ P is an upper
bound (resp. lower bound) for A if a ≤ p (resp. p ≤ a) for each a ∈ A. If, in addition,
p has the property that whenever there exists b ∈ P with a ≤ b (resp. b ≤ a) for each
a ∈ A then p ≤ b (resp. b ≤ p), we call p the least upper bound/supremum (resp.
greatest lower bound/infimum) for A and write supA = p (resp. inf A = p). We are
now ready to present the second approach to defining a lattice.

Definition 1.4 (Lattice - revisited). A poset L is a lattice if and only if for every
a, b ∈ L, both sup{a, b} and inf{a, b} exist in L.

We now state, and prove, the equivalence of the two definitions of a lattice mentioned
earlier.

Proposition. If L is a lattice according to (1.1), then define an order ≤ on L via the
rule a ≤ b if and only if a = a ∧ b for all a, b ∈ L. If, on the other hand, L is a lattice
defined through (1.4), then define the operations ∨ and ∧ via a ∨ b = sup{a, b} and
a ∧ b = inf{a, b} for each a, b ∈ L.

Proof. We begin by verifying the first assertion. Suppose L is a lattice defined by
(1.1) and let ≤ be as in the statement of the proposition. Then the reflexive and
antisymmetric properties of ≤ follow from the idempotent and commutative laws of
(1.1) respectively. Also, if a ≤ b and b ≤ c, for some a, b, c ∈ L, then

a = a ∧ b = a ∧ (b ∧ c) = (a ∧ b) ∧ c = a ∧ c,

where the first, second, and third equalities follow from a ≤ b, b ≤ c, and associativity
law of (1.1) respectively. Hence, a ≤ c and ≤ is indeed a partial order on L. So it
remains to show that sup{a, b} and inf{a, b} exist in L. Indeed, the absorption law of
(1.1) applied to a and b tells us that a∨ b is an upper bound for both a and b. Suppose
there exists another element p ∈ L such that a ≤ p and b ≤ p. Then a = a ∧ p and
b = b ∧ p so that

a ∨ p = (a ∧ p) ∨ p = p, and b ∨ p = (b ∧ p) ∨ p = p, (1)

where the second equalities both follow from the absorption law of (1.1). Further, the
commutativity and associativity of ∨ give

(a∨ p)∨ (b∨ p) = (a∨ p)∨ (p∨ b) = a∨ (p∨ p)∨ b = (a∨ b)∨ (p∨ p) = (a∨ b)∨ p. (2)

Hence, combining (1) and (2) we obtain (a ∨ b) ∨ p = p. But then the absorption law
gives

(a ∨ b) ∧ p = (a ∨ b) ∧ [(a ∨ b) ∨ p] = a ∨ b.
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In other words, (a∨ b) ≤ p and so (a∨ b) = sup{a, b} ∈ L, as desired. The existence of
infimum follows from a similar argument so we omit the details.
On the other hand, suppose L is defined via definition (1.4). We must verify that sup
and inf satisfy the four properties of definition (1.1). Once again, it is sufficient to
establish the result for sup. Indeed, sup{x, y} = sup{y, x} and so sup is commutative.
The idempotent law is also trivial. The absorption law is also clear since z = inf{x, y} ≤
x and sup{x, z} = x. Lastly, if x, y, z ∈ L are any three elements, then note y ∨ z =
sup{y, z} and x∨ y = sup{x, y} both exist in L as L satisfies definition (1.4). Without
loss of generality, suppose sup{y, z} = y and sup{x, y} = x. Then

sup{x, sup{y, z}} = x = sup{sup{x, y}, z},

and so sup is associative. Hence, one can readily see that the two definition are indeed
equivalent; i.e., given a lattice according to one of the two definitions, it is possible to
construct a lattice according to the other definition (and vice versa) in such a way that
the two constructions are inverses of one another.

Our next task is to introduce the notion of modularity of lattices, which we will use
to study the lattice of submodules of a given module.

Definition 1.5 (Lattice Homomorphism). Let L1 and L2 be any two lattices. We
say that φ : L1 → L2 is a lattice homomorphism if φ preserves the two binary operations
∨ and ∧; in other words, given a, b ∈ L1 we have

φ(a ∨ b) = φ(a) ∨ φ(b), and φ(a ∧ b) = φ(a) ∧ φ(b).

Observe that a lattice isomorphism is simply a bijective lattice homomorphism.

Definition 1.6 (Sublattice). Given a lattice L and L′ ⊆ L non-empty, we say that
L′ is a sublattice of L, if (a ∨ b), (a ∧ b) ∈ L′ whenever a, b ∈ L′.

We say that a lattice L1 can be embedded into a lattice L2 if there exists a sublattice
of L2 which is isomorphic to L1.

Definition 1.7 (Modular Lattice). A lattice L is said to be modular (or has the
modularity property) if the following condition holds:

x ∨ (y ∧ z) = y ∧ (x ∨ z), whenever x ≤ y,

for each z ∈ L.

We now present one of the most celebrated results in the theory of lattices which is
due to Dedekind. The proof is not difficult but is rather tedious and can be found in
[1] so we omit the details.

Theorem 1.8 (Dedekind). A lattice L is non-modular if and only if N5 can be embedded
into L, where N5 is the following lattice.
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b
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Remark: Observe that N5 is in fact non-modular. One readily sees that a ≤ b but
a ∨ (b ∧ c) = a ∨ y = a whereas b ∧ (a ∨ c) = b ∧ x = b.

We now introduce the lattice of submodules of a module.

Definition 1.9 (Lattice of Submodules). Given a ring R and an R-module M , let
LR(M) denote the set of R-submodules of M . Then LR(M) is a lattice, where ∧ and
∨ correspond to the intersection and sum of modules respectively.

This leads to the following important observation. But first, recall the correspon-
dence theorem for modules:

Theorem 1.10 (Correspondence Theorem For Modules). Let R be a ring and
let M be an R-module with K a submodule of M . Then every submodule of M/K is of
the form N/K for some submodule N of M containing K. In other words, there is a
one-to-one correspondence between the submodules of M/K and the submodules of M
that contain K. This correspondence is given via N/K 7→ N .

Observation: Using the language of lattices, we see that Theorem (1.10) gives a one-
to-one lattice homomorphism ψ : LR(M/K) → L(M) whose image consists of the
lattice of submodules containing K. Since such a homomorphism must respect sums
and intersections, we see that

ψ(N1/K +N2/K) = ψ(N1/K) + ψ(N2/K) = N1 +N2,

and
ψ(N1/K ∩N2/K) = ψ(N1/K) ∩ ψ(N2/K) = N1 ∩N2,

For any submodules N1, and N2 containing K. On the other hand, (N1 + N2)/K 7→
N1 +N2 and (N1 ∩N2)/K 7→ N1 ∩N2 by the correspondence theorem; as ψ is injective,
we obtain the following:

(N1 +N2)/K = N1/K +N2/K, and (N1 ∩N2)/K = (N1/K) ∩ (N2/K). (3)

The following proposition is of particular importance.

Proposition (Modularity Property For LR(M)). If N1 ⊆ N2 and K are submodules
of an R-module M , then

(N1 +K) ∩N2 = N1 + (N2 ∩K).
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Proof. For the backward inclusion, note that N2 ⊇ N1 and N2 ⊇ N2 ∩ K. Further,
(N1 + K) ⊇ N1 and (N1 + K) ⊇ (N2 ∩ K) both follow from the definition of sum of
modules. Hence, the right hand side is clearly contained in the left hand side.
Conversely, let n2 = n1 + k ∈ N2 ∩ (N1 + K) be given, where n1 ∈ N1, n2 ∈ N2, and
k ∈ K. Then, we may write k = n2 − n1. But this means k ∈ (N2 ∩K) from which we
immediately have n2 = n1 + k ∈ N1 + (N2 ∩K). This establishes the forward inclusion,
and thus, completes the proof.

We end this section by describing a lattice isomorphism between LR(M) and LR/I(M),
where I is an ideal of R. The construction is as follows:

• Given any R/I-module M , turn M into an R-module by defining rm, with r ∈ R
and m ∈M , to be (r+I)m. Note we must have that I annihilates M by definition
of R/I.

• Conversely, given an R-module M for which I annihilates M , define the new scalar
multiplication (r + I)m to be rm. Observe that this is well-defined. Indeed, if
r + I = r′ + I, for some r, r′ ∈ R, then r − r′ ∈ I and so (r − r′)m = 0 as I
annihilates M . Hence, rm = r′m as desired.

It is now straightforward that sending an R-submodule of M to itself by viewing it
as an R/I-module (via the above construction) gives a lattice isomorphism between
LR(M) and LR/I(M).

2 Categories

We begin with some basic definitions.

Definition 2.1 (Category). A category C consists of a collection of objects, usually
denoted obj (C) (but we shall simply write C to refer to the objects), together with a
set of morphisms (or arrows) between them. Given any two objects A,B ∈ C, we write
HomC(A,B) to denote the set of morphisms between A and B. When the underlying
category is understood, we shall omit the subscript C and simply write Hom(A,B). As
one would expect, morphisms come equipped with a composition rule; given any three
objects A,B,C ∈ C, we have

Hom(B,C)× Hom(A,B)→ Hom(A,C),

usually denoted (g, f) 7→ g ◦ f , where g : B → C and f : A → B. We further require
that this composition rule satisfies the following two rules:

1. Associativity : if f ∈ Hom(A,B), g ∈ Hom(B,C) and h ∈ Hom(C,D), then
h ◦ (g ◦ f) = (h ◦ g) ◦ f .

2. For each object A ∈ C, the set Hom(A,A) is equipped with a unique identity
morphism, denoted 1A (or idA) such that for any morphisms f ∈ Hom(A,B) and
g ∈ Hom(B,C) we have idB ◦ f = f and g ◦ idB = g.
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Before we give some examples of categories, we have an important/technical remark.

Remark (Important Example): The most prototypical example of a category that
we should keep in mind is the category of sets, denoted Set, whose objects are the sets
and whose morphisms are functions between sets. Note that this definition does not
interfere with Russell’s paradox, since in our definition of a category we never required
the existence of a set of all objects!

Example 2.2. The following are all examples of categories.

• Grp is the category whose objects are groups, and whose morphisms are group
homomorphisms.

• Veck is the category whose objects are k-vector spaces (k is a field), and whose
morphisms are linear transformations.

• Ab is the category of abelian groups along with group homomorphisms.

• Ring is the category of rings, where the objects are rings and the morphisms are
maps of rings; i.e., maps that respect addition and multiplication, and send the
multiplicative identity to itself.

• ModR is the category of (left) R-modules, (where R is any ring) whose objects
are modules over R, and whose morphisms are maps between modules.

• Top is the category of topological spaces along with continuous maps as mor-
phisms.

• Given a poset P with a relation ≤, one can think of the tuple (P,≤) as a category
whose objects are elements of P , and with a single morphism from x to y if and
only if y ≤ x and no morphism otherwise.

Next, we have the notion of a subcategory.

Definition 2.3 ((Full) Subcategory). A category D is said to be a subcategory of
another category C if all objects of D are objects of C and HomD(A,B) ⊆ HomC(A,B)
for all objects A,B ∈ D. If, in addition, HomD(A,B) = HomC(A,B) for all A,B ∈ D,
we call D a full subcategory of C.

Note: Note that the categories that arise in universal algebra are all subcategories of
Set whose objects are structures of a given signature with the morphisms being the
homomorphisms in that signature.

From the above examples we see that Ring is a subcategory of Ab and Ab is
the full subcategory of Grp. Since categories are best understood through studying
the morphisms between its objects, we now turn our attention to some properties of
morphisms.
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Definition 2.4 (Isomorphism). A morphism f ∈ Hom(A,B) is said to be an iso-
morphism if there exits a unique morphism g ∈ Hom(B,A) such that f ◦ g = idB and
g ◦ f = idA.

Definition 2.5 (Monic/Epic Morphisms). A morphism f ∈ Hom(A,B) is called
monic if for any two distinct morphisms g, h ∈ Hom(C,A), we have f ◦g 6= f ◦h. On the
other hand, we say that f is an epic morphism if for any two distinct g, h ∈ Hom(B,C),
we have g ◦ f 6= h ◦ f .

The following proposition tells us that in some special cases, our notions of one-to-
one and onto coincide with notions of monic and epic.

Proposition. If C is a subcategory of Set, then any one-to-one map is monic, and any
onto map is epic.

Proof. Suppose f ∈ Hom(A,B) is one-to-one and let g, h ∈ Hom(C,A) be any two
distinct morphisms. Then there exists c ∈ C such that g(c) 6= h(c). As f is one-to-one,
this implies that f(g(c)) 6= f(h(c)), and thus f ◦ g 6= f ◦h; i.e., f is a monic morphism.
Similarly, if f ∈ Hom(A,B) is onto and g, h ∈ Hom(B,C) are distinct, then there exists
b ∈ B such that g(b) 6= h(b). As f is onto, there exists some a ∈ A such that f(a) = b.
But then g(f(a)) 6= h(f(a)), and so g ◦ f 6= h ◦ f ; f is an epic morphism.

Remark: It is natural to ask if the converse to the above proposition is also valid.
In fact, reversing the above argument gives the converse! But we should keep in mind
that we are only working in Set; this is in general not true in other categories as the
following example shows (see Exercise A2 in [2]).

Example 2.6. Consider Z,Q ∈ Ring, and let f : Z ↪→ Q be the natural inclusion map.
Then f is epic, but not onto. Indeed, observe that if R ∈ Ring and g, h ∈ Hom(Q, R)
satisfy g ◦ f = h ◦ f , then g(f(n)) = h(f(n)) for all n ∈ Z ⊂ Q. Now if r = a/b ∈ Q is
non-zero with a, b ∈ Z and gcd(a, b) = 1, then

g(r) = g
(
ab−1

)
= g(f(a))g(f(b))−1 = h(f(a))h(f(b))−1 = h(ab−1) = h(r),

and thus, g = h; in other words, f is epic. However, it is trivial that f is not onto.

Note that the above argument boils down to the fact that any ring homomorphism
Q→ R (R a ring) is determined by its action on Z ⊂ Q. Fortunately, the above result
is always valid in ModR as we will show next.

Proposition. In ModR, monic morphisms are one-to-one and epic morphisms are
onto.

Proof. First, suppose f ∈ Hom(M,N) is monic for some (left) R-modules M and N .
Let g, h ∈ Hom(ker f,M) be defined by g := 0 and h the canonical inclusion map.
Then f ◦ g = 0, and f ◦ h = 0 by definition of ker f . As f is monic, it follows that
g = h = 0. But h : ker f →M and h is injective, so we must have ker f = 0; that is, f

7



is one-to-one.
On the other hand, if f is epic, let g, h ∈ Hom(N,N/f(M)) be given by g := 0 and
h the canonical surjection N → N/f(M). Again, g ◦ f = 0 as g = 0, and h ◦ f = 0
by definition of N/f(M). As f is epic we must have g = h = 0; in other words,
N/f(M) = 0 (since h is onto). Hence, f(M) = N and so f is onto.
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